Un data warehouse è un tipo specializzato di database progettato per l'archiviazione, l'organizzazione, il recupero, l'analisi e la gestione di grandi volumi di dati strutturati e talvolta non strutturati. Funge da archivio centrale per i dati raccolti da varie fonti all'interno di un'organizzazione o da più organizzazioni. Ecco una definizione approfondita che copre vari aspetti di un data warehouse:
- Architettura: un data warehouse viene solitamente costruito utilizzando un'architettura a più livelli che include origini dati, integrazione dei dati, archiviazione e livelli di accesso. I dati vengono spesso archiviati in una forma denormalizzata per ottimizzare le prestazioni di lettura per le query analitiche.
- Integrazione dei dati: comporta la raccolta di dati da fonti eterogenee come database relazionali, file flat, sistemi di elaborazione delle transazioni online (OLTP), feed di dati esterni, ecc. I dati vengono quindi ripuliti, trasformati e caricati (processo ETL) nel data warehouse .
- Archiviazione dei dati: a differenza dei database tradizionali ottimizzati per l'elaborazione transazionale, un data warehouse è ottimizzato per query e analisi. I dati sono organizzati in modo da supportare query complesse e consentire un riepilogo efficiente.
I modelli di dati comuni includono lo schema a stella e lo schema a fiocco di neve.
- Variante temporale: i dati nel magazzino sono contrassegnati con data e ora e i dati storici vengono conservati per consentire analisi e previsioni delle tendenze. Ciò consente alle organizzazioni di avere una prospettiva storica dei propri dati, a differenza dei sistemi OLTP che in genere conservano solo i dati correnti.
- Orientato al soggetto: un data warehouse si concentra su argomenti come vendite, marketing, finanza, ecc. e fornisce una visione consolidata in tutta l'organizzazione. Ciò consente un'analisi e un reporting aziendale più efficienti.
- Non volatile: una volta caricati i dati nel data warehouse, non è previsto che cambino frequentemente. Ciò è in contrasto con i sistemi operativi in cui i dati vengono costantemente aggiornati.
- Scalabilità e prestazioni: i data warehouse sono progettati per gestire grandi volumi di dati e devono fornire prestazioni elevate per query analitiche complesse. Ciò comporta spesso hardware specializzato, strategie di indicizzazione, elaborazione in memoria ed elaborazione parallela.
- Sicurezza e conformità: poiché archiviano informazioni sensibili e business-critical, i data warehouse devono implementare solide misure di sicurezza tra cui controllo degli accessi, crittografia e conformità a vari requisiti normativi.
- Data mart: all'interno di un data warehouse possono esserci sottosezioni più piccole e specializzate chiamate data mart. I data mart sono personalizzati per le esigenze specifiche delle singole unità aziendali all'interno dell'organizzazione.
- Integrazione di Business Intelligence (BI) : i data warehouse sono spesso integrati con strumenti di BI che forniscono funzionalità di visualizzazione, reporting e analisi. Ciò consente ai responsabili delle decisioni di ottenere informazioni dai dati e guidare le strategie aziendali.
- Funzionalità in tempo reale e quasi in tempo reale: alcuni data warehouse moderni offrono funzionalità di data warehousing in tempo reale o quasi in tempo reale per consentire approfondimenti più tempestivi.
- Soluzioni basate su cloud: con l'evoluzione del cloud computing, molti data warehouse vengono ora offerti come soluzioni basate su cloud, fornendo scalabilità, flessibilità e opzioni convenienti per organizzazioni di varie dimensioni.
- Manutenzione e gestione: la complessità di un data warehouse richiede monitoraggio, messa a punto e manutenzione continui. Una corretta gestione garantisce la qualità dei dati, l'ottimizzazione delle prestazioni e l'allineamento con le esigenze aziendali in continua evoluzione.
Un data warehouse è un sistema di archiviazione dei dati sofisticato e altamente specializzato, fondamentale per l'analisi dei dati, il reporting e il supporto decisionale all'interno di un'organizzazione. Incapsula una gamma di tecnologie, metodologie e pratiche per fornire una visione consolidata, coerente e completa dei dati di un'organizzazione. Consente la trasformazione dei dati grezzi in informazioni significative, consentendo così alle organizzazioni di prendere decisioni basate sui dati.